Multi-resolution Texture Classification Based on Local Image Orientation

نویسندگان

  • Ovidiu Ghita
  • Paul F. Whelan
  • Dana Elena Ilea
چکیده

The aim of this paper is to evaluate quantitatively the discriminative power of the image orientation in the texture classification process. In this regard, we have evaluated the performance of two texture classification schemes where the image orientation is extracted using the partial derivatives of the Gaussian function. Since the texture descriptors are dependent on the observation scale, in this study the main emphasis is placed on the implementation of multi-resolution texture analysis schemes. The experimental results were obtained when the analysed texture descriptors were applied to standard texture databases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mandibular Trabecular Bone Analysis Using Local Binary Pattern for Osteoporosis Diagnosis

Background: Osteoporosis is a systemic skeletal disease characterized by low bone mineral density (BMD) and micro-architectural deterioration of bone tissue, leading to bone fragility and increased fracture risk. Since Panoramic image is a feasible and relatively routine imaging technique in dentistry; it could provide an opportunistic chance for screening osteoporosis. In this regard, numerous...

متن کامل

Identification of Houseplants Using Neuro-vision Based Multi-stage Classification System

In this paper, we present a machine vision system that was developed on the basis of neural networks to identify twelve houseplants. Image processing system was used to extract 41 features of color, texture and shape from the images taken from front and back of the leaves. The features were fed into the neural network system as the recognition criteria and inputs. Multilayer perceptron (MLP) ne...

متن کامل

Unsupervised Image Segmentation based on the Multi-resolution Integration of Adaptive Local Texture Descriptors

The major aim of this paper consists of a comprehensive quantitative evaluation of adaptive texture descriptors when integrated into an unsupervised image segmentation framework. The techniques involved in this evaluation are: the standard and rotation invariant Local Binary Pattern (LBP) operators, multichannel texture decomposition based on Gabor filters and a recently proposed technique that...

متن کامل

A scale- and orientation-adaptive extension of Local Binary Patterns for texture classification

Local Binary Patterns (LBPs) have been used in a wide range of texture classification scenarios and have proven to provide a highly discriminative feature representation. A major limitation of LBP is its sensitivity to affine transformations. In this work, we present a scale- and rotation-invariant computation of LBP. Rotation-invariance is achieved by explicit alignment of features at the extr...

متن کامل

A Novel Noise-Robust Texture Classification Method Using Joint Multiscale LBP

In this paper we describe a novel noise-robust texture classification method using joint multiscale local binary pattern. The first step in texture classification is to describe the texture by extracting different features. So far, several methods have been developed for this topic, one of the most popular ones is Local Binary Pattern (LBP) method and its variants such as Completed Local Binary...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008